我们在进行教案的写作过程中一定要保持自己的思路是清晰的,教案在起草的时候,老师需要考虑联系实际,写作模板网小编今天就为您带来了初二上册数学教案6篇,相信一定会对你有所帮助。
初二上册数学教案篇1
一、教学目标
1、类比分数约分,掌握分式约分方法,熟练进行约分
2、经历从分数的约分到分式的约分的类比探索、归纳过程,明确分式约分的概念和依据。渗透数学中的类比数学思想。
3、在对分式约分的过程中,由繁到简,使学生感受数学的简洁美。
二、重难点:
重点:如何进行分式约分
难点:分子分母为多项式的分式如何约分
三、教材分析
本节课是冀教版八年级上册第十四章第一节的第二课时,它是分式基本性质的运用,也是后面学习分时乘除法运算的基础,起着承上启下的的作用
四、学情分析
学生在小学学过了分数的约分,七年级学习了因式分解,上节课又学习了分式的基本性质,这些都是学好分式约分的基??
五、教法学法
自学点拨,小组合作
六、教学过程
一)导入
上节课,我们利用类比思想,由分数认识了分式,由分式的基本性质通过观察、猜想、验证、归纳等环节得到了分式的基本性质,这节课,我们利用分式的基本性质继续探究新知。
?设计意图:通过简单的开场白,使学生注意力集中到课堂上,头脑中马上回想上节课的内容,而且知道了要利用分式的基本性质来探究新知,明确了学习的方向。】
二)知识储备
设计意图:通过第一个小题,使学生回想分数的约分方法,为类比引入分式的约分服务,第二小题的设置是为了让学生回忆因式分解的方法,如果忘记了,旁边给了小贴士,帮助回忆
三)类比引新
?设计意图:课上的检测很重要,但有时由于课上的突发事件而不能完成,看情况而定】
结束语:数学的美无处不在,今天,我们学习了分式的约分,这个由繁到简的过程中,充分展示了数学的简洁美,然我们继续努力,去发现,去体会数学的美吧!
初二上册数学教案篇2
教学目标:
知识与技能
1、掌握直角三角形的判别条件,并能进行简单应用;
2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型、
3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、
情感态度与价值观
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识、
教学重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、
教学难点
会辨析哪些问题应用哪个结论、
课前准备
标有单位长度的细绳、三角板、量角器、题篇
教学过程:
复习引入:
请学生复述勾股定理;使用勾股定理的前提条件是什么?
已知△abc的两边ab=5,ac=12,则bc=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法、
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
1、如何来判断?(用直角三角板检验)
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
2、继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:
5,12,13; 6,8,10; 8,15,17、
(1)这三组数都满足a2 +b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
3、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2,那么这个三角形是直角三角形、
满足a2 +b2=c2的三个正整数,称为勾股数、
4、例1一个零件的形状如左图所示,按规定这个零件中∠a和∠dbc都应为直角、工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
随堂练习:
1、下列几组数能否作为直角三角形的三边长?说说你的理由、
⑴9,12,15; ⑵15,36,39;
⑶12,35,36; ⑷12,18,22、
2、已知abc中bc=41,ac=40,ab=9,则此三角形为_______三角形,______是角、
3、四边形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求这个四边形的面积、
4、习题1、3
课堂小结:
1、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2,那么这个三角形是直角三角形、
2、满足a2 +b2=c2的三个正整数,称为勾股数、勾股数扩大相同倍数后,仍为勾股数、
初二上册数学教案篇3
教学内容
本节课主要介绍全等三角形的概念和性质.
教学目标
1.知识与技能
领会全等三角形对应边和对应角相等的有关概念.
2.过程与方法
经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.
3.情感、态度与价值观
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1.重点:会确定全等三角形的对应元素.
2.难点:掌握找对应边、对应角的方法.
3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备
四张大小一样的纸片、直尺、剪刀.
教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程
一、动手操作,导入课题
1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?
2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?
?学生活动】动手操作、用脑思考、与同伴讨论,得出结论.
?教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.
学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.
?互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.
概念:能够完全重合的两个三角形叫做全等三角形.
?教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?
?学生活动】动手操作,实践感知,得出结论:两个三角形全等.
?教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.
?学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?
?交流讨论】通过同桌交流,实验得出下面结论:
1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.
2.这时它们的三个顶点、三条边和三个内角分别重合了.
3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.
初二上册数学教案篇4
教学目标
1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.
教学重点:等边三角形的性质和判定方法.
教学难点:等边三角形性质的应用
教学过程
i创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
ii例题与练习
1.△abc是等边三角形,以下三种方法分别得到的△ade都是等边三角形吗,为什么?
①在边ab、ac上分别截取ad=ae.
②作∠ade=60°,d、e分别在边ab、ac上.
③过边ab上d点作de∥bc,交边ac于e点.
2. 已知:如右图,p、q是△abc的边bc上的两点,,并且pb=pq=qc=ap=aq.求∠bac的大小.
分析:由已知显然可知三角形apq是等边三角形,每个角都是60°.又知△apb与△aqc都是等腰三角形,两底角相等,由三角形外角性质即可推得∠pab=30°.
3. p56页练习1、2
iii课堂小结:1.等腰三角形和性质;等腰三角形的条件
v布置作业: 1.p58页习题12.3第ll题.
2.已知等边△abc,求平面内一点p,满足a,b,c,p四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
初二上册数学教案篇5
1、教材分析
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。
2、教法建议
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的.有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。
一、素质教育目标
(一)知识教学点
1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。
2、了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点
1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2、通过推导四边形内角和定理,对学生渗透化归思想。
3、会根据比较简单的条件画出指定的四边形。
4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、重点难点疑点及解决办法
1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2、教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具准备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第一课时
七、教学步骤
?复习引入】
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这??
章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。
?引入新课】
用投影仪打出课前画好的教材中p119的图。
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。
?讲解新课】
1、四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形。
(2)要与三角形类比。
(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点 。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。
(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。
(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。
2、四边形内角和定理
教师问:
(1)在图4—3中对角线ac把四边形abcd分成几个三角形?
(2)在图4—6中两条对角线ac和bd把四边形分成几个三角形?
(3)若在四边形abcd如图4—7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形。
我们知道,三角形内角和等于180,那么四边形的内角和就等于:
①2180=360如图4
②4180—360=360如图4—7。
例1 已知:如图48,直线 于b、 于c。
求证:(1) (2) 。
本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。
?总结、扩展】
1、四边形的有关概念。
2、四边形对角线的作用。
3、四边形内角和定理。
八、布置作业
教材p128中1(1)、2、 3。
九、板书设计
四边形(一)
四边形有关概念
四边形内角和
例1
十、随堂练习
教材p122中1、2、3。
初二上册数学教案篇6
重难点分析
本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。
教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5. 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
矩形教学设计
教学目标
1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。
2.能运用以上性质进行简单的证明和计算。
此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。
引导性材料
想一想:一般四边形与平行四边形之间的相互关系?在图4.5-1的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。
小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?
(让学生初步感知矩形与平行四边形的从属关系。)
演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。
问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?
说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。
问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?
说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。
学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。
学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。
问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?
说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如rt△abc),让学生自己发现斜边上的中线bo与斜线ac的大小关系,然后让学生自己给出如下证明:
证明:在矩形abcd中,对角线ac、bd相交于点o,ac=bd(矩形的对角线相等)。
ao=co
在rt△abc中,bo是斜边ac上的中线,且 。
直角三角形斜边上的中线等于斜边的一半。
例题解析
例1:(即课本例1)
说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:
如图4.5-4,欲求对角线bd的长,由于bad=90,ab=4cm,则只要再找出rt△abd中一条直角边的长,或一个锐角的度数,再从已知条件aod=120出发,应用矩形的性质可知,adb=30,另外,还可以引导学生探究△aob是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:
∵四边形abcd是矩形,
ac=bd(矩形的对角线相等)。
又 。
oa=bo,△aob是等腰三角形,
∵aod=120,aob=180- 120= 60
aob是等边三角形。
bo=ab=4cm,
bd=2bo=244cm=8cm。
例2:(补充例题)
已知:如图4.5-5四边形abcd中,abc=adc=90, e是ac的中点,ef平分bed交bd于点f。
(1)猜想:ef与bd具有怎样的关系?
(2)试证明你的猜想。
解:(1)ef垂直平分bd。
(2)证明:∵abc=90,点e是ac的中点。
(直角三角形的斜边上的中线等于斜边的一半)。
同理: 。
be=de。
又∵ef平分bed。
efbd,bf=df。
说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。
课堂练习
1.课本例1后练习题第2题。
2.课本例1后练习题第4题。
小结
1.矩形的定义:
2.归纳总结矩形的性质:
对边平行且相等
四个角都是直角
对角线平行且相等
3.直角三角形斜边上的中线等于斜边的一半。
4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。
作业
1.课本习题4.3a组第2题。
2.课本复习题四a组第6、7题。
初二上册数学教案6篇相关文章:
★ 初二诗歌作文8篇