教案可以有计划地引导学生进行学习,通过一个系统的教案,教师可以更好地组织学生的学习活动和学习任务,下面是写作模板网小编为您分享的六年级数学圆教案优秀8篇,感谢您的参阅。
六年级数学圆教案篇1
教材分析
日常生活和生产劳动经常应用百分数,如用百分数表示一个数量比另一个数量多或少的关系,又如利息与纳税的计算、折扣的设计与计算等。应用百分数解决问题可以列式计算,也可以列方程解答。这些都是本单元的教学内容。
全单元的教学内容比较多,编排6道例题、四个练习以及全单元的整理与练习,大致分成五段教学。
学生分析
在此学习内容之前,学生已经学习了百分数的定义和读写、百分数和分数、小数的互化、百分数的简单应用、运用方程解决简单的百分数问题。在此基础上,进一步学习百分数的应用。
教学内容
小学数学实验教材(北师大版)六年级上册第一单元p25-26内容。
教学目标
1.进一步认识“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2.能解决“比一个数增加百分之几的数”或“比一个
数减少百分之几的数”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。教学重点理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
教具准备
多媒体课件。
教学过程
一、导 入
1. 我国有一个非常的科学家-----袁隆平,大家知道吗?(如果有学生知道,可以让学生说一说)
2. 他是我国杂交水稻研究领域的开创者和带头人,也是世界上第一个成功地利用水稻杂交优势的科学家,是联合国粮农组织国际首席顾问,被誉为“杂交水稻之父”。
3. 因为杂交水稻比普通水稻的产量要高很多,所以我国杂交水稻的种植面积一年比一年增加。
二、百分数的应用
1.生活中的百分数问题
20xx年某地在教水稻的种植面积为20万公顷,20xx年的种植面积比20xx年增加25%,20xx年杂交水稻的种植面积是多少公顷?
2.线段图
教师提出要求:你能用线段图表示出20xx年和20xx年之间的数量关系吗?
学生独立画图
展示学生的成果
教师评价
25% = 1/4
20公顷
20xx年
25%
20xx年
3.学生自主解答问题
4.班内交流
办法一: 20 × 25% = 5(公顷)
20 + 5 = 25(公顷)
办法二: 1 + 25 % = 125%
20 × 125% = 25(公顷)
三、试一试
1.生活中的折扣
游乐场的套票原来每套30元,六一期间八折优惠,购买一套这样的套票能省多少元?
2. 思考:八折是什么意思?
学生自由发表自己的见解
教师评价
八折就是现价是原价的80%
3. 学生自主解答然后交流
办法一: 30 × 80% = 24(元)
30 - 24 = 6(元)
办法二: 30 × ( 1 - 80%)
= 30 × 20 %
= 6(元)
四、练一练
1.教科书p26练一练第1题
2.教科书p26练一练第2题
3.教科书p26练一练第3题
五、课堂总结
通过今天的学习你有什么收获?
六年级数学圆教案篇2
教学内容:
教材第59页及相关题目。
教学目标:
1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。
2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。
3、培养学生观察周围事物的兴趣,提高观察能力。
教学重点:
认识圆的对称轴。
教学难点:
用圆设计图案的方法。
教学准备:
多媒体课件、圆规、直尺等。
教学过程:
学生活动(二次备课)
一、复习导入
1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。
师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。
2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?
学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。
3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。
二、预习反馈点名让学生汇报预习情况。
(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1、设计美丽图案——花瓣。
(1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?
(2)想一想,自己尝试画一画。可参考课本第59页的步骤。
(3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。
小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。
2、设计美丽的图案——风车图。
(1)观察图案,想一想如果画这个图案,应按怎样的步骤。
(2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:
①先画一个圆,在圆内画两条互相垂直的直径。
②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。
③把所画半圆涂上颜色。
3、设计美丽的图案——太极图。
指名说一说画太极图的步骤:
(1)画一个圆,在圆内画一条直径。
(2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。
(3)把圆的一半涂上颜色,如图所示。
四、巩固练习
1、完成教材练习十三第6题。
2、完成教材练习十三第8题。
3、完成教材练习十三第9题。
五、拓展提升
观察图案,说一说下面两个图案的'画法。
六、课堂总结
让学生说一说这节课的收获。
七、作业布置
教材练习十三第7题和第10题的第1、4个图案。
画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。
教学反思
成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。
六年级数学圆教案篇3
一、学习目标
(一)学习内容
?义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。
(二)核心能力
经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。
(三)学习目标
1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。
2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。
(四)学习重点
了解简单的鸽巢问题,理解“总有”和“至少”的含义。
(五)学习难点
运用“鸽巢原理”解决相关的实际问题或解释相关的现象。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1.谈话导入
师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。
师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。
2.问题探究
(1)呈现问题,引出探究
出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。
师:“总有”是什么意思?“至少”有2支是什么意思?
学生自由发言。
预设:一定有
不少于两只,可能是2支,也可能是多于2支。
就是不能少于2支。
(2)体验探究,建立模型
师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?
小组活动:学生思考,摆放。
①枚举法
师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。
预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。
师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?
(不一定,也可能放在其它笔筒里。)
师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?
预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。
师:这种放法可以记作(3,1,0)
师:这3支铅笔一定要放在第一个笔筒里吗?
(不一定)
师:但是不管怎么放——总有一个笔筒里放进3支铅笔。
预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。
师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?
预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。
预设4:还可以(2,1,1)
或者(1,1,2)、(1,2,1)
师:还有其它的放法吗?
(没有了)
师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)
师:这几种放法如果用一句话概括可以怎样说?
(装得最多的笔筒里至少装2支。)
师:装得最多的那个笔筒一定是第一个笔筒吗?
(不一定,哪个笔筒都有可能。)
?设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】
②假设法
师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?
预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。
师:“平均放”是什么意思?
预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。
师:为什么要先平均分?
学生自由发言。
引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。
师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。
师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。
?设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】
(3)提升思维,建立模型
①加深感悟
师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。
预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。
师:把7支笔放进6个笔筒里呢?还用摆吗?
学生自由发言。
师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?
师:你发现了什么?
预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。
师:你的发现和他一样吗?
学生自由发言。
师:你们太了不起了!
师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?
练一练:
师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”
师:说说你的想法。
师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】
介绍狄利克雷:
师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。
②建立模型
出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?
学生独立思考、讨论后汇报:
师:怎样用算式表示我们的想法呢?生答,板书如下。
7÷3=2本……1本(2+1=3)
师:如果有10本书会怎么样能?会用算式表示吗?写下来。
出示:
把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
10÷3=3本……1本(3+1=4)
师:观察板书你有什么发现?
预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。
师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。
学生讨论,汇报:
8÷3=2……22+1=3
8÷3=2……22+2=4
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?
预设:我认为根“商”有关,只要用“商+1”就可以得到。
师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。
引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。
鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。
?设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】
3.巩固练习
(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。
(2)第69页的做一做第1、2题。
4.全课总结
师:通过这节的学习,你有什么收获?
小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。
(三)课时作业
1.一个小组共有13名同学,其中至少有几名同学同一个月出生?
答案:2名。
解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】
2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。
答案:8名。
解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】
第二课时鸽巢原理
中原区汝河新区小学师芳
一、学习目标
(一)学习内容
?义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。
(二)核心能力
在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。
(三)学习目标
1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。
(四)学习重点
引导学生把具体问题转化为“抽屉原理”。
(五)学习难点
找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1.情境导入
师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。
师:神奇吧!你们想不想表演一个呢?
师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?
在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)
2.探究新知
(1)学习例3
①猜想
出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
预设:2个、3个、5个…
②验证
师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。
可以用表格进行整理,课件出示空白表格:
学生独立思考填表,小组交流。
全班汇报。
汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。
课件汇总,思考:从这里你能发现什么?
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。
③小结
师:为什么球的个数一定要比抽屉数多?而且是多1呢?
预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。
师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。
板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。
(2)引导学生把具体问题转化成“抽屉原理”。
师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?
思考:①摸球问题与“抽屉原理”有怎样的联系?
②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?
学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。
从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。
结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。
3.巩固练习
(1)完成教材第70页“做一做”第1题。
(2)完成教材第70页“做一做”第2题。
4.课堂总结
师:这节课你学到了什么知识?谈谈你的收获和体验。
(三)课时作业
1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?
答案:5只。
解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】
2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?
答案:16条。
解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】
六年级数学圆教案篇4
教学内容:
教科书第99—100页的例1。
教学目标:
1、 经历简单的收集、整理、描述和分析数据的过程。
2、 使学生初步了解数据的收集和整理过程,学会整理简单的数据,会看简单的统计表和统计图,会根据统计图表中的数据回答一些简单的问题。
3、 使学生体验解数据的收集、整理、描述和分析的过程,能发现信息并进行简单的数据分析。
4、 体会到数学知识与实际生活紧密联系,激发学生的学习兴趣,培养学生细心观察的良好学习品质。
教学重点:
绘制纵向复式条形统计图。
教学难点:
根据统计图发现问题、提出问题、解决问题。
教学过程:
一、创设情境,生成问题:
你们知道全球有多少人?中国有多少人吗?那你们知道自己所在的区有多少人吗?
下面我们一起对收集到的信息进行整理和分析。
见课本99页的例1某地区的城乡人口统计表
二、探索交流,解决问题:
1、根据统计表,分别完成两个单式条形统计图
见课本99页的统计图
2、根据两个条形统计图你能发现哪些信息?如果要在一个统计图中描述这些信息怎么办?在学习复式统计表时是怎么把两个单式统计表合并的?
3、投影展示学生绘制的纵向复式条形统计图
板书课题:纵向复式条形统计图
4、讨论交流:
复式条形统计图与单式条形统计图有什么区别?
5、全班汇报交流。
分析:
(1)那年城市人口数最多?那年最少?
(2)那年乡村人口数最多?那年最少?
(3)那年城乡人口总数最多?那年最少?
(4)你还能得到哪些信息?
三、巩固应用,内化提高:
1、 完成102页的做一做
2、完成练习十九的第1题和第2题
四、回顾整理,反思提升:
这节课你有什么收获?
六年级数学圆教案篇5
设计说明
1.利用圆内知识间的内在联系,解决实际问题。
学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。
2.重视图示的作用。
结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
课前准备
教师准备ppt课件
学生准备圆片剪??
教学过程
一、创设情境,激发兴趣
师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)
师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)
师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]
设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。
二、探究新知,建构模型
1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。
师:怎么求出浇灌的面积呢?(生汇报:根据s=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)
教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。
2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)
(1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)
(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡)(学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)
(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m)面积:3.14×202=1256(m2)]
3.探究推导圆的面积计算公式的其他方法。
(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)
(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。
圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2
设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。
六年级数学圆教案篇6
设计说明
“百分数的意义和读写法”是在学生学习了整数、小数以及分数的基础上进行教学的,百分数与分数有着密切的联系。基于以上认识,教学设计主要突出以下几点:
1.以实际生活情境为载体,感知百分数的意义,培养学生的思维能力。
数学知识来源于生活,又服务于生活。百分数的知识与现实生活有着密切的联系,所以,在引入课题和百分数意义的教学中,教学内容的选择都要紧密联系学生的生活实际,而且通过课前对百分数的收集,使学生认识到百分数在生产、生活中的广泛应用。同时,以实际生活情境为载体,充分挖掘学生学习的潜能,使学生积极地参与到数学活动中去,培养学生的思维能力。
2.注重新旧知识的对比和迁移,体现类比的思想方法。
对比和迁移能使学生容易接受新知识,防止新旧知识混淆,提高学生的辨别能力,从而扎实有效地掌握数学知识。教学百分数的意义是在学生已掌握了分数的意义的基础上进行的,教学设计中通过与分数的意义进行对比,明确分数的意义与百分数的意义的区别,更加突出百分数的意义是表示一个数是另一个数的百分之几的数,表示的是两个数之间的倍比关系。
课前准备
教师准备ppt课件
学生准备学生课前收集的生活中有关百分数的资料
教学过程
⊙情境导入
1.出示课件。
师:同学们,看了这段资料,你发现了什么?你有什么感想?
引导学生发现百分数的同时,让学生感受到我们国家的经济发展水平正在逐步提高。
师:你知道这些数叫什么数吗?还在哪些地方见过这样的数?
学生讨论后,教师明确:像上面这样的数,如14%、65.5%、120%……叫做百分数。
2.引导学生交流课前收集到的百分数的资料。
师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂
六年级数学圆教案篇7
教学目标 1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;
2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;
3、培养学生分析和解决实际问题的能力,发展学生的思维;
4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。
教学
关键 培养学生分析和解决实际问题的能力
教学
重点 复习分数乘除法应用题,掌握解题方法。
教学
难点 找准单位“1”
教具
准备 多媒体课件
教学步骤 教学过程 教学课件演示 教学意图
一、基础训练导入。
师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?
专项训练:
课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。
在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?
我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?
常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。
二、根据看线段图列式
师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】
注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。
三、基础练习
基础练习只列式不计算
师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?
归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。
尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?
【教学课件演示】
培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。
四、对比练习
1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。
通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。
五、巩固练习
练习八的3-5题
师:下面请同学们独立进行计算,完成练习八p118第3题和第4题。
(1)、读题,分别找到两道题的单位“1”,并说说这两道题有何不同?
(2)、根据题意分析数量关系,然后列式计算,全班讲评。
(3)、出示p118页5题。
提问:把谁看作单位“1”?
结合讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量作为单位“1”。在解答两步计算的分数应用题时,更要注意每一步是把什么数量看作单位“1”,每一步中的`单位“1”可能是不同的。
【教学课件演示】
加强解题思维的训练,沟通新旧知识,沟通解决问题的方法。
六、强化练习
1、完成练习二十七的第7题:
3个同学跳绳。小明跳了120个,小强跳的是小明跳的5/8,小亮跳的是小强的2/3,小亮跳了多少个?
渗透健康教育:
跳绳运动,是对付肥胖、预防血脂异常、高血压最切实可行的方式,也是一个很好的锻炼耐力的有氧代谢运动。同学们要积极进行跳绳运动,
学生独立进行思考计算,请个别同学讲解回答。
2、练习二十七的第8题,练习二十七的第9题。
(1)一个县去年绿色蔬菜总产量720万千克,是今年绿色蔬菜总产量的9/10。今年全县绿色蔬菜总产量是多少万千克?
(2)一个县去年绿色蔬菜总产量720万千克,比今年少了1/10,今年全县绿色蔬菜总产量是多少万千克?
渗透健康教育:
绿色蔬菜含维生素u较多是抗癌、防癌的复合剂,对胃溃疡高血压、动脉硬化、视网膜出血、紫癜以及出血性肾炎等疾病有治疗效果多吃的蔬菜会对胃肠功能的恢复有所帮助。
【教学课件演示】
强化数量关系的分析,强化方程的解法,体现解法的多样性、解法的最优化,提高学生自主意识和优化意识。
通过强化练习提升学习水平,让各种类型的学生都有所提高。
七、课堂总结
今天你都学会了什么?有什么收获?今天我们学习了应用题,解答这类应用题要先找准单位“1”和相等的数量关系,再确定算法,然后列式计算,先找单位1,再看知不知,已知用乘法,未知用除法,比1多就加,比1少就减”。
【教学课件演示】 帮助学生抓住解题的重点,已知单位“1”的用什么方法解,不知道单位“1”的又用什么方法解。帮助学生进行数学知识网络的建构。
八、作业:
练习二十七的第8、10题 【教学课件演示】
板书:
分数乘除法应用题复习
根据条件分析单位“1”和找准对应分率。
用算术方法解:已知单位“1”用乘法,不知单位“1“用除法。
用方程解:单位“1”不知道或者题目的条件中含有“比另一个数多(或少)几分之几”。
六年级数学圆教案篇8
教材分析:
本课知识强调百分数在现实生活中的应用价值,沟通数学知识和现实生活中数学问题间的联系,使学生自主建构数学关系,发展应用意识。
学情分析:
这部分内容是在学生学习了百分数的认识和解决简单问题的基础上安排的,学生可利用已有的知识和经验,通过知识间的联系,在逐步解决新问题的过程中形成理财方案和方法。
设计理念:
利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值
教学目标:
知识与能力:学会理财,能对自己设计的理财方案作出合理的解释。
过程与方法:结合具体事例,经历综合运用所学知识解决理财问题的过程。
情感态度价值观:感受理财的重要性,培养科学、合理理财的观念。
教学重点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:
能对自己设计的理财方案作出合理的解释。
教学准备:
课件
教学过程:
一、创设情境,引入课题
创设情境,引入课题师:同学们在家里面,爸爸妈妈是怎样理财的?你有没有帮你们的爸爸妈妈理财?
师:那今天我们就来帮助聪聪理财吧!让我们也学会理财,回家也能帮助爸爸妈妈。
出示课题:学会理财
二、新授
(一)存钱计划
1.出示情境图,让学生读图和文字,了解有关的信息和要解决的问题。
2.提出帮聪聪计算每月收入是多少元的要求,让学生自己计算交流计算的结果。
3.让学生读支出项目表,了解聪聪家每月支出的项目和大约钱数,提出帮聪聪家做存钱计划的要求,启发学生从实际出发,合理提出存钱建议,并算一算到期能回收多少钱。
4.交流学生做的计划,一方面要求学生说明怎样做计划的理由,另一方面,关注计算是否正确。
(二)存钱方案
1.教师口述聪聪爸爸获得奖金并计划存钱的事情,提出小组合作做三个存钱方案的要求,鼓励学生小组内大胆发表自己的意见。
2.交流各小组做的方案,重点说一说是怎样考虑的,这样存钱有什么好处等。
3.提出计算每种存钱方案获得的利息的要求,学生计算后交流计算的结果。
(三)议一议
教师提出:哪种存钱方式好,为什么?
重点关注学生是如何阐述理由的。能否对方案的合理性作出说服力的说明。
三、总结
相信同学们通过今天这节课,都具备了一定的理财能力,回家后把你做的理财计划给爸爸妈妈看,请他们做出评价。
六年级数学圆教案优秀8篇相关文章: