考研数学课心得体会6篇

时间:
Trick
分享
下载本文

通过写心得体会,我们可以随时记录下自己的内心感受,个人要想有不同的见解,就要定期记录好心得,下面是写作模板网小编为您分享的考研数学课心得体会6篇,感谢您的参阅。

考研数学课心得体会6篇

考研数学课心得体会篇1

考研数学复习的做题重点

各科目各有重点

对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。,二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和等。充分把握住这些重点,同学们在以后的复习强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度,从而使整个复习规划有条不紊。

转变做题方式

很多文科生做数学题很喜欢这样的步骤:做题(有些人甚至是看题)、不会、看懂答案(或者看不懂)、结束,你是不是这样呢?合适的方法是:做题、不会、把目前能计算或推导的结论写出来,想想还差什么---看一眼答案,有些是一看就恍然大悟、那么就自己再重新算一遍,然后好好总结下为什么刚才没算出来,是方法没遇过还是要经过变形自己没看出来,有时候一道题做不出来答案一看就是种超纲题或者偏题难题,提醒考生,数学一般考的都是最常见,最基础的方法,所以那些冷门方法一律放弃,在复习过程中,大家一定要打好基础,方法只是辅助,最重要的还是大家对于基础的把握和延伸。这就要求考生在复习过程中要多做题,做题时要精益求精。

考研数学课心得体会篇2

我参加过两次考研,第一次在x年,考北航计算机研究生:第二次,考西工大,x年研究生。两次考研,第一次312,第二次356.我将自己的感受写出来,希望能帮助大家。

x年的计算机,总分356,数学121,专业96,英语56,政治83.我自己是x年毕业的,工作一年后参加考研。其实这个分数自己还是比较满意的,专业课比自己预想的低了些。

先说一下数学吧,121分,不高也不低,相信如果考计算机,考中国任何一所大学都不会拉分。现在全国联考计算机,可以说得数学者得天下,那么数学的复习就显得很重要了。考研的时候,总会有人问“李永乐或者陈文灯的书,你做第几遍了”,

我可以回答,我一遍都没做过。考研是一个很基础的东西,所以,要抓住最基础的问题,那就是课本,也许很多人户屑于课本,觉得太简单,那就大错特错了。首先,你应仔细的看课本,每一个概念,每一个例题,每一道习题,这是你以后成功的保证。对于概念,定理,要有自己的理解,可以用自己的语言来描述,可以知道他们彼此之间的关系,能做到合起书,将一个个定理在草稿纸上推导出来,知道书中各个章节的顺序,并且知道他们之间的联系。说得夸张一点,你可以默写出书中各个章节的标题,包括小标题。如果你能做到以上的,你的概念和理论就没有一点问题了。再说例题,课本上的例题很简单,

但是很典型,最简单的例子最容易说明最重要的问题,你就不会被繁琐的解题步骤弄的不知道例题到底想说明什么。举个例子,在一阶导数的例题里,仔细看看,你就会发现,例题中包括所有的求导方法。也许,你自己却从未意识到,还在看考研参考书里的分类,永远记住,课本是最好的参考书。最后说习题,书上的习题,相信没有多少考研的人每一道题都认真做过。但是,习题,就如同例题,简单,但是最能要你明白你所需要学习的知识点。

所以,对于课后习题,你用过仔细认真的去做每一道题。会做并能做对每一道题是最基本的要求,你还要明白你所做的每一道题是考察你什么知识点,用的是什么方法,可以尝试在习题旁边写上出题人的意图。能做到以上3点,可以说你就拥有一个很好的基础了。高数,线代,概率,这三门课是一样的。线代,其实最简单,如果你能不看书推到出每一个定理(如果能,你就知道他们之间的联系,那思路一定会很清晰),

那么我想如果你不会做的题,那90%的人肯定不会做。概率,看起来公式太多,很难记住,同样,推导每一个公式,平时练习的时候做到不看书查公式,查定理,忘记了或者记不住了,就推导。

慢慢你就会发现,你都可以记住了,即使考试一紧张忘记了,也能用很短的时间推导出公式了。曾经在考研论坛上看到过,刚开始复习的时候觉得高数简单,线代和概率太难。随着复习的深入,就会发现线代和概率是那么的简单,高数有点难,这就对了。我觉得课本至少看两遍,一直看到,闭着眼,能回想起书中的每一个知识点。

当然,根据自己的基础,如果你还觉得哪些知识点薄弱,那就多做习题,不要把盲点留到最好。在复习课本的时候就可以做真题了,我选的是黄先开的那本历届数学真题解析,将近20年的数学真题分章节讲解,练习题也是真题,不过不是数一的。认真的做每一道题,然后思考出题者的意图,这一点很重要。

考研数学课心得体会篇3

具体来说,考研数学基础的掌握,可以通过以下方法:首先,大家要把考研数学复习全书上总结好的知识点认真掌握住。一般不同版本的复习全书上的知识点讲解都很全面、详细,还有例题讲解当中总结出的解题技巧和方法,推导出的公式、定理,都要重点记忆。其次,数学也要做笔记。由于复习全书上的知识点过于详细,在以后的第二、三轮复习中,就没有时间去系统的看了,而且可能其中大部分你已经掌握了。这就需要你把其中精华的地方和自己掌握的不好的地方以及考试的常考知识点总结在一个本子上,这样再复习的时候就可以直接看这个本子,会节省下很多时间,提高效率。而且复习间歇,可以随时拿出来记一记、背一背。这些基础知识如果一段时间不看就会有些生疏,用的时候拿不准。所以,要每天都携带在身上,就像英语单词小册子一样,要经常温习。

学会总结,善于归纳

大家要学会使知识系统化。善于总结也是需要十分强调的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就结束了,一套题的价值也就到此为止了。因此大家在纠正完错误之后,需要再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现你不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其最大的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就ok了。

考研数学课心得体会篇4

一、检查试卷,稳定心情

拿到试卷以后不要着急做题,花一两分钟时间把卷子通篇看一下,检查一下考研数学试卷是不是23道题目,大致都是什么题型的题目。这样做有两个好处:一是可以有效防止因粗心大意而漏掉一些题目,漏题就太可惜了;二是可以加强自己的信心,稳定心情,通过长达一年时间的复习,看了这么多参考书,听了那么多考研课程,相信试卷中肯定有不少题型你是非常熟悉的,看了这些题目以后,你会感到非常高兴,自信心倍增,原本紧张的心情也会放轻松,这样才能正常发挥。

二、按序做题,先易后难

考研数学题量都是23道题目,其中选择题8道,填空题6道,解答题9道。题目类型也是固定的,数学一和数学三1~4题是高数选择题,5~6题是线代选择题,7~8题是概率选择题;9~12题是高数填空题,13题是线代填空题,14题是概率填空题,15~19题是高数解答题,20~21题是线代解答题,22~23题是概率解答题。数学二1~6题是高数选择题,7~8题是线代选择题;9~13是高数填空题,14题是线代填空题,15~21题是高数解答题,22~23题线代解答题。

选择题和填空题主要考察的是基本概念、基本公式、基本定理和基本运算,解答题包括计算题和证明题考察内容比较综合,往往一个题目考查多个知识点,从近些年的试卷特点,题型都比较常见,难度不算大,我们最好按题目顺序做,这样能稳定心情,很快进入状态,也不容易漏做题目,如果遇到自己不熟悉的题目也不要发慌,可以暂时放下接着做下一个题目。等容易的题目有把握的题目都做完之后,再静心研究有疑问的题目,但如果实在没有思路也要学会放弃,留出时间检查自己会做的题目,争取会做的题目不丢分,因为数学的分数最依赖的还是能否将会做的题都做对。

此外,有些同学喜欢先做高数,再做线代,这样的做题顺序也可以,关键是看你平时训练时是如何训练的,选择适合自己的就是最好的,但在此提醒一下大家一定不要漏做题。

三、合理分配答题时间

根据以往考生的经验,一道客观题控制在3分钟左右,最多不要超过5分钟,解答题一般10分钟左右,根据难易程度适当调整。最后至少留出30分钟时间检查,确保会做的题目计算正确。

考研线性代数考点预测:向量的数学定义

首先回顾一下,在中学我们是如何表示向量的。中学数学中主要讨论平面上的向量。平面上的向量是可以平行移动的。两个相互平行且长度相等的向量我们认为是相等的。好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。这时向量终点的坐标同时也是向量的坐标。这样,我们就可以用一个实数对表示一个平面向量了。

一个实数对实际是我们线性代数中的一个二维行向量。而线代中讨论的向量是任意n维的。所以线性代数中的向量可视为中学向量的推广。

下面是向量的数学定义:

由n个实数a1,a2,…,an构成的有序实数组(a1,a2,…,an)称为一个n维行向量。类似可定义列向量。

问个问题:向量和矩阵是什么关系?向量可视为特殊的矩阵(行数或列数为1的矩阵)。这是理解向量的一个很好的角度。因为学习向量时,我们已把矩阵讨论得很清楚了,所以通过矩阵理解向量就能省不少事。

知道了什么是向量,那什么是向量组呢?向量一般来说不是单独出现,而是成组出现的。我们把多个向量放在一起考虑,就构成了向量组。

当然向量组的严格数学定义也不难理解:由若干个同型向量构成的集合称为一个向量组。这里的“同型”可以理解成矩阵同型,也可以用向量的语言描述成:同为行向量或列向量且维数相同。

考研数学课心得体会篇5

我学的是数学,在论坛上看了不少考研经验分享,但是关于数学专业的经验分享不算很多。虽然自己考得学校不在论坛中热议之内,但还是愿意抛个砖,期望以后有更多的数学专业的同志们分享自己如玉般得心得。各位,献丑了!

关于公共课

政治和英语方面的经验分享太多了,每个人都是每个人的时间安排,都有自己的一套方法,我觉得适合自己就可以。我要说的就两点:一是要有耐心,特别是在加强基础阶段,没必要纠结单词记不住,阅读错很多,只要紧紧的hold住自己的急躁,改变会在你不确定的某天降临。二是不要贪图资料的多少,关键是精,反正我周围有不少人随风而动,听说什么资料好久去买,最后都是半途而废,每一本都看不了多少,还浪费钱,这样不值得的。自己咬定一本我觉得就行,我个人感觉公共课的资料都差不多,没必要纠缠与这个的。

说说数分和高代

这个我细细说道一下。

资料

我在论坛上见很多人都在问数学专业复习选择什么参考书比较好。我说说自己的体会吧!我两门课都是用的钱吉林的题集,之前也知道这书里有些许的错误,不过我用完之后觉得这些错误无伤大体,而且可能还顺便锻炼锻炼自己的纠错能力,也算巩固自己的知识吧!乐在其中吧!当然了,书中有一些比较难的题,尤其是高代那本,我觉得不用纠缠,考研没有那么高的难度。

当然了,我得承认裴礼文的数分和吉米多维奇的数分要比钱吉林的好,但是考虑到我们的重点是抓基础,所以钱吉林的足够了。如果你是要去北大之类的话,那我觉得裴礼文的还是必须得。但是我一直以为吉米多维奇的不适合考研用,读研后可以慢慢做做。高代嘛,杨子胥的很多人都推荐,由于自己没用过,就不做评价了。

其实啊,考研最好的资料还是课本。这是我在考研后期感觉到的,那时只顾着做题做题的,后来看课本才觉得有些晚了。我推荐复旦陈传璋版的数分,自己用了觉得还不错,不论是从内容安排还是习题上,我觉得对我帮助挺大的。当然了,不同的学校可能指定的参考书目是不一样的,其实自己在这里啰嗦的目的还是想让大家多回归课本,我觉得起码三遍。

时间:时间的安排是很重要的。

首先吧,时间上耐得住寂寞,有对象的互相多谅解一些,没对象的咱还是先单着好。可能不是这么绝对,但是对我的确是这样的,当时原以为信心满满的,可是到头来如当头一棒,最初懵了一个月,后来虽然好点了,但偶尔还是有些影响的。这期间没怎么学,对着电脑不是发呆就是电影电视剧什么的,搞得没有半点精神,要说没影响绝对是假的。所以我才有了上边的说法,可能这也分人吧,最起码要是让我再来一次,我不会那么干的。尽量把更多的时间放学习上吧。对我们数学专业的同仁们更是啊!数分高代不是那么容易搞定的,拉长些战线,多用点时间总是好的。我的经验是一定要用好暑假这段时间,黄金时间啊!记得去年暑假自己没有回家,跟几个同学合租的房子,除了辅导班的课以外,大部分时间实在自习室度过的。每天早上先背会儿英语,然后上午数分下午高代。感觉特充实,效率也挺高。当时,自习室也没几个人,虽然热点,但一切还算好吧。反正自己感觉幸亏是暑期打下点基础,否则可能自己根本考不上,因为去年9、10两个月我们实习,根本复习没有什么进展。现在想想还后怕。

再谈谈数学专业

很多人都问学数学的将来能干什么。这个我也不算很明白,还好,自己还算喜欢这个专业,不致于被这个问题吓走。不过,的确也挺尴尬。

我说说自己的一点看法啊!我算一个偏向实用的人吧,搞数学研究那固然是好,但我个人还是偏于应用的,而数学的应用如果单纯的局限在数学,我觉得没什么前途的,必须和其他专业结合,而且我一直看好数学和计算机、和经济的结合,我也相信这样的结合必然是魅力无穷的。所以,数学专业的人一定需要一个比较开阔的视野,不要局限在数学这个小框框内,走出去机会还是大大的。希望自己说的是对的吧!!

关于工作和考研

我只想说,与其考研后纠结考研和工作,不如在自己准备考研时把这个问题给解决了。选择好自己内心的一条路,坚持走下去必然会是好的结果。

考研数学课心得体会篇6

第一,对概率论与数理统计的考点要整体把握。考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。

第二,在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。一般同学都会处于后一种状态。那么怎么办呢?请转阅第二条。

第三,在心理上重视。考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。人的潜力是非常巨大的,这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!

考研高数重难点:中值定理证明的方法

中值定理包括费马引理、罗尔定理、拉格朗日定理、格西中值定理、泰勒中值定理,这四个定理之间的联和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。而且同学们需要掌握的不单单是这五个中值定理,而且关于他们本身的证明也是需要重点掌握的,尤其是费马引理、罗尔定理、拉格朗日定理、格西定理的证明过程,这个过程在教科书上都有证明的过程,同学们需要自己把这个都完全能够掌握,不仅仅是因为在09年的真题考查过这个的证明,而是这几个的证明思想是之后类似题目证明反复使用的。而闭区间上的连续定理主要是指的最值定理、介值定理、零点存在定理。

一般来讲闭区间上连续的定理是直接用的,也就是用来直接证明一些类似与存在一点在某个区间内使得某个函数是等于零的。而中值定理的应用一般是需要通过构造函数的,一般来讲都是三步走,第一步去构造函数,合理的去构造函数是能够做出这个证明题目最最关键的一步,而构造函数的方法一般是通过对要求的那个等式积分得到,同时也要注意两遍同时乘以一个函数,比如同时乘以ex,因为这个函数积分是不变的,所以会有这个。构造完成后就是第二步去检验条件,看是用那个定理,一般来讲,如果是求一阶的导数等于0优先想到的就是罗尔定理,如果是让你求高阶的一个式子等于零或者等于某个式子,那么优先想到的就是泰勒公式了,因为上面的五个中值定理中,只有泰勒公式是会涉及到高阶的,其他的几个都是一阶,如果知道的是一阶,最多也是求解二阶的。第三步就是求导验证自己求出来的是否是要求证明的结果。

考研数学微积分要点:连续性概念及应用

首先,所谓连续即“极限值=函数值”,这一个等式包含了三个方面:

1、函数必须在该点处有定义;

2、函数必须在这个点附近存在极限;

3、是前面1、2两点的内容必须相等,同时满足这三个条件,才叫做函数在某点处连续。

看到,判断函数连续,要先求极限,所以,如何求函数在该点处的极限值或是用极限存在的充要条件(左右极限存在且相等),是一个隐含的知识点。

其次,我们自然会问,会不会有不连续的点呢?

答案当然是肯定的,不连续的点就是我们所说的———间断点。那么所谓“不连续”就是不能同时满足连续的三个条件的点,即:

1、函数在该点处没有定义;

2、若函数在该点有定义,但函数在该点附近的极限不存在;

3、虽然函数在该点处有定义,极限也存在,但是二者不相等。

对于间断点,根据左右极限存在与否,我们把它分为两类。若左右极限都存在的间断点,称为第一类间断点;若左右极限相等,这个间断点称为第一类间断点中的可去间断点;若左右极限不相等,这个间断点称为第一类间断点中的跳跃间断点。若左右极限中至少有一个不存在(包含极限等于无穷的情形)的间断点,称为第二类间断点;若其中一个极限是趋于无穷的,这个间断点就称为无穷间断点;若极限是在两个常数之间来回振荡的,就称为振荡间断点。

最后,对于连续性最重要的应用或者是说考研中的一个小难点

就是闭区间上连续函数的三个性质:最大最小值定理、零点定理、介值定理。

对于上面的知识点,我们看看在考研中是怎么考察的。对于连续的概念,难度上属于简单知识点。

首先,在十五年前,对于连续性的考查,更多的是给一个分段函数,然后判断分段点处函数的连续性,这是一个基本题型,只需判断连续的三个条件即可,其实主要是考查求函数某点处左右极限的值。

然后,进入20世纪,考查又倾向于在选择题当中,给一个函数,让大家来判断这个函数有多少间断点,间断点的类型是什么,这个又比之前考查的更高一层。

最后,就是在逻辑推理题中,考查零点定理,介值定理,通常,考查介值定理的时候也会用到最值定理。

我们归纳题型知道,判断方程根的情况的时候,一般用零点定理;题干中包含好几个函数值相加的时候,一般用介值定理。具体在证明题中怎么用,我们会在专门的证明题专题中讲解。

上面是对连续概念本身做出的分析。还有连续与极限存在,可导,可微的关系也是选择题中考查的热点,这个我们在后续一元函数导函数中详细说明。

考研数学课心得体会6篇相关文章:

初三数学工作总结范文6篇

小学二年级数学工作总结范文6篇

2023年八年级数学教学工作总结优质6篇

2023年一年级数学工作总结精选6篇

小学三年级数学期末教学工作总结6篇

2023年一年级数学工作总结优秀6篇

人教版六年级上册数学工作总结6篇

2023年八年级数学教学工作总结6篇

幼儿园大班数学教案6篇

高一数学学期教学工作总结6篇

考研数学课心得体会6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
11239