我们都必须认识到,教案是教学过程中的指导和支持,有了教案,我们才能更有条理地展示教学方法和技巧,下面是写作模板网小编为您分享的分数除法三教案7篇,感谢您的参阅。
分数除法三教案篇1
说课内容:
九年义务教育六年制小学数学人教版第十册第65页。
教学地位:
分数与除法是在学生学习分数的产生和分数的意义基础上学习的。教材讲分数的产生时,学生认识到在整数计算中往往不能得到整数的结果,要用分数表示,初步涉及分数与除法的关系。学习分数的意义时,认识到把一个物体或一个整体平均分成若干份,蕴含着分数与除法的关系,但是没有明确点出分数与除法的关系。教材在学生理解了分数的意义之后,让学生学习分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数表示商,这样可以加深和扩展学生对分数意义的理解,同时也为学生进一步学习假分数以及假分数与整数、带分数的互化做好准备。
教学目标:
1、通过分数与除法的学习,渗透事物是互相联系的、变化的、发展的辩证的唯物主义的基本观点。
2、使学生通过观察与操作,探索分数与除法的关系,会用分数表示两个数相除的商。
3、使学生在自主探索、合作交流的过程中,进一步发展数感,培养观察、比较、分析、推理等能力。
教材分析:
首先,认真钻研教材正确把握教学内容,明确教学目标是正确选择教法的前提。把握教学内容一要全面、二要具体、三要恰当。所谓全面指从思想教育、能力、非智力的心理品质等全面考虑(见教学目标);所谓具体指在40分钟内实现知识领域,能力领域,情意领域的各项任务;所谓恰当,指教法的选择符合教材的内容要求,学生的知识水平,认识能力以及教学内容的阶段性,注意不随意拔高和降低教学要求。避免重点不突出,难点过分集中,以及贪多求快偏差,教师在选择教法前,要深刻地钻研教材,领会编者意图,合理组织教材内容。教师要从具体教材中选择本质的、区别于其他事物的特有属性,也就是了解概念的本质特征和这一概念所反映的对象的全体。例如,分数与除法的概念教学,要明确其本质特征,一是计算整数除法不能整除的时候,可以用分数表示除法的商。以1/3个为例,按照分数的意义,把一个蛋糕平均分成3份,其中的一份是一个的1/3,就是1/3个,还可以这样理解1/3个,表示把一个平均分成3份,每份是1/3米。二是分数与除法的关系可以用用文字表示,即被除数÷除数=被除数/除数,在分数中分母不能是零;还可以用字母表示a÷b=a/b(b≠0)。三是分数与除法的关系,表述为除法与分数的比较:被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。
其次,选择教法必须符合小学生的年龄特点和认知规律。小学生形成概念必须经过思维的加工,逐步完成从具体形象到抽象化的过渡。由于学生知识和思维能力的局限,实现这一过渡需要有一定的阶段性和层次性。为此,要帮助学生形成分数与除法关系的概念拟分五个层次(一)复习旧知,引进新课;(二)启思讨论,探求新知;(三)实际操作,寻找规律;(四)比较分析,发现规律;(五)多层练评,反馈总结。
第三,选择教学必须考虑结合教学内容侧重培养学生某一方面的能力和智力,受到思想品德教育。“分数与除法”这节概念课要侧重引导学生对教学内容进行分析、综合、比较、抽象、概况,并运用所学知识进行简单的推理和判断。例如,在寻找规律,这一层次安排4个步骤:(1)分析题意列出算式(2)实际操作:让学生拿出同样大小的三个圆形纸片,把3个月饼看作单位“1”,把它平均分成4份,求一份是多少,你们能分吗?(3)展示分法:出示3种,有一种是把3个饼叠在一起,平均分成4份,取出一份,这一份是3个饼的几分之几?把3个1/4拼在一起看看拼成了一个饼的几分之几?(4)初步抽象:从图中可以看出:一个饼的3/4就是3个饼的1/4,3/4个饼表示什么意思?把3个饼平均分成4份表示这样1份的数;把一个饼平均分成4份,表示这样3份的数。这样,通过教学使学生既增长知识又长智慧,同时,结合教学内容渗透事物是相联系的辩证唯物主义的基本观点。
教学学法:
教学是师生的双边活动,现代教育理论重视课堂教学以学生为主体,重视学生学习方法的指导。叶圣陶先生说过:“教是为了用不着教”,为了“不教”,教师要充分调动学生的积极性和主动性,让学生参与数学概念形成的过程。初步掌握概念教学的基本程序:通常是引入概念,理解概念,巩固概念,应用概念,遵循学生建立和形成数学概念的基本规律:感知表象——建立概念——巩固概念——应用概念等基本环节,通过数学内容的学习逐渐掌握上述的“程序”与“规律”,以提高数学概念的自学能力。
在“分数与除法”的教学中,学法指导体现于(1)抓要点,促联系;(2)抓理解,促深化;(3)抓方法,寻策略;(4)抓整理,促记忆。在教学中,让学生参与概念的形成过程。在这个过程中,让学生对一组对象中的每个事物的个别属性进行了解,(例1、例2)对对象间的属性异同进行剖析,接着通过比较,采取异中求同的方法抽象出分数与除法的共同属性即分数与除法的关系式:a÷b=a/b(b≠0),同时引导学生探索分数与除法关系的外延,强调b≠0,弄清其道理;最后,引导学生将新概念与已有的相关的概念联系起来,并进行适当划分从中渗透比较、对应等数学思想,指导学生学习方法策略,进而构建新概念系统。如设计通过填表,让学生进一步了解分数与除法各部分间的联系与区别。
这样,帮助学生将所学感念纳入知识系统,形成良好稳定的认知结构。
分数除法三教案篇2
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、p31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
教学后记
分数除法三教案篇3
一、借助实物,初步理解。
1、创设情境,出示问题:老师出示一个苹果,提出问题:如果把这个苹果平均分给两个同学,每人分几个?谁来分一下?
生:用小刀把苹果从中间切开,平均分成两份。
说明每份是这个苹果的二分之一。
师:谁能列式?
生:1÷2=0.5(个)。
师:谁能用分数来表示商?
生:二分之一。
师:计算除法,在得不到整数商时,除了可以用小数外,还可以用分数表示,今天我们来研究分数与除法的关系。
评:开头点题,节省了时间,用学生熟悉的事情吸引了学生的注意力,激发了学生的兴趣。
2、观察实物,探索原理。
师:如果我们把这个苹果平均分成4份,该怎样分?
学生上台分一分。学生边分边说:把一个苹果平均分成4份,每份是四分之一个。
评:借助实物操作与演示,学生很容易直观理解一个的二分之一就是二分之一个、一个的四分之一就是四分之一个的道理。并且能够迁移类推得出结论:一个的几分之几就是几分之几个。
二:合作交流,解决问题。
1、讲故事,提出问题。
昨天晚上,老师做了3张饼,可香了,刚要吃饭的时候,对门家的小姑娘来了,进门便是客,我们一家三人热情地邀请她与我们共进晚餐,吃完饭后,我一看,三张饼全吃完了,你能计算出我们平均每人吃几张饼吗?
评:简短的小故事,吸引了学生探索的积极性与主动性。
2、合作交流,解决问题。
⑴想:教师出示三张圆形纸片,说明:用三张圆形纸片代替三张饼,现在如果要平均分给你们组四个人,你该怎样分?每人想出一个办法。
⑵评:小组内交流,在组长的带领下,评选出你们认为最合理、最简单的方法。
⑶分:根据刚才选出的办法,利用手中的学具(三张圆形纸片、剪刀、彩笔)剪一剪、分一分,并且把组长的那份涂色。
⑷汇报:小组间交流汇报,争论、补充。
生1:我们小组是一张饼、一张饼的分,把每张饼都平均分成4份,每人吃一份。三张饼都吃完后,就是每人吃了3个四分之一,也就是四分之三张。
生2:我们是把3张饼摞起来,再平均分成4份,每人吃四分之一,再拼起来就是四分之三张。
生3:我们是先把2张饼从中间切开,每人分半个饼,再把第三张饼平均分成4份,每人一份,又分了四分之一,前面的半个是四分之二张,一共每人吃了四分之三张。
⑸评价:自由发表意见,评价哪组的分法最好。
生1:我认为第一种分法最好,因为我们吃的时候就是这样分的。
生2:我认为第2种方法好,因为这样分简单,而且先分好了再吃更显得公平。
师总结:刚才同学们都说的很有道理,而且你们说的清楚明白。说明我们同学的语言表达能力越来越强了。
师生一起板书出答案。
评:学生获得知识的过程不单是知道什么,更重要的是知道为什么,小组合作过程是本节课的.创新之处,也是学生求知的内在需要和渴望。小组合作过程分:想、评、分、汇报、评价五步完成,要求具体,分工明确,既有独立思考的时间,又有交流、操作的时间,使各个环节都高效有序地进行。体现了小组学习的实效性。
3、观察比较,寻求规律
师:观察黑板上三个算式,找出被除数、除数与商中的分子、分母有什么关系。
学生回答,得出结论:被除数÷除数=被除数/除数
师:如果用字母a、b表示,该怎样表示?
生:a÷b=a/b
师:在除法中,对除数是怎样规定的?
生:除数不等于0。
师:那么,分数中应该谁有限制呢?
生:b≠0。
评:打破原有学习模式,放手让学生自己通过观察,得出公式,这样在学生头脑中留下深刻的印象。
三、练习巩固,加深理解。
1、阅读课本102—103页内容。
2、练习题略。
四、学生回顾,全课小结。
师:在这节课,你学到了什么知识?你能用这节课学到的知识,编出不同的数学问题来吗?
总评:“新课标”的重要理念之一是关注学生的生活体验和也已有的生活经验。课始就设计分苹果,既贴近学生生活,又直观容易理解。这样在课的开始,就激发了学生的学习兴趣,使学生获得了愉悦的数学学习体验,同时促进学生主动构建相关的数学知识。
教学整个过程注重了学生兴趣的激发与主动性的参与,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与别人交流,动手操作。“动手实践、自主探索与合作交流是学生学习数学的重要方法。”在教学设计中注意体现这一理念,在主动的、互相启发的学习活动中是学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。
分数除法三教案篇4
教学目标
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点
重点:弄清单位“1”的量,会分析题中的数量关系。
难点:分数除法应用题的特点及解题思路和解题方法。
教学过程
一、复习
出示复习题:
1、下面各题中应该把哪个量看作单位“1”?
2、用方程解下列各题。
3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?
让学生观察题目,看看题目中所给的.三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×4/5=体内水分的重量。
4、指名口头列式计算。课件出示。
二、新授
1、教学例1
根据测定,成人体内的水分约占体重的2/3,而儿童
体内的水分约占体重的4/5,小明体内有28千克水分,
他的体重是爸爸体重的7/15,小明的体重是多少千克?
爸爸的体重是多少千克?
例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?
(相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。
先在小组内独立解答。
课件演示计算的算式。
(根据数量关系式:小明的体重×4/5=体内水分的重量,
反过来,体内水分的重量÷4/5=小明的体重)。
2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)
爸爸:
小明:
根据数量关系式:爸爸的体重×7/15=小明的体重
小明的体重÷7/15=爸爸的体重
①解方程:解:设爸爸的体重是χ千克。
7/15χ=35
χ=35÷7/15
χ=75
②算术解:35÷7/15=75(千克)
课件演示计算的算式。
3、用方程解应用题应注意哪些问题
首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间
的等量关系,再确定设哪个量为χ,并列出方程.
4、巩固练习:p38“做一做”课件出示:
学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、巩固应用
1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?
(先分析数量关系式,然后确定单位“1”,最后再进行解答。)
2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?
(注意引导学生发现250ml的鲜牛奶是多余条件)
3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?
(引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)
4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?
独立完成后订正。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
分数除法三教案篇5
教学内容:
分数与除法的关系
教学目标:
1、使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
2、运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数,并学会解答“求一个数是另一个数的几分之几”的应用题。
教学过程:
一、复习
1、说说下面各分数的意义,分数单位,以及有几个这样的分数单位。
2、看句子说把()看作单位“1”,平均分成()分,()占其中的()份。
二、教学应用题
例2把1米长的钢管平均截成6段,每段长多少米?
分析:求每段长多少米,就是求每份数
列式:1÷6=1/6(米)
根据分数的意义,把一米长的钢管看作单位“1”,平均分成6份,表示这样1份的数
二、引入新课
1、分数与除法有什么关系?
2、教学例3
把3只月饼平均分成4份,每份是多少只?
分析:(1)每份是多少?就是计算3÷4得多少
(2)图示,把3只月饼平均分成4份,每人得到的1份,是3只月饼的1/4,也就是一只月饼的3/4。
因此:3÷4=3/4(只)
3、找一找
(1)分数与除法的关系
两个自然数相除,它们的商可以用分数表示。
被除数÷除数=被除数/除数
(2)想一想,分数的分母能是0吗,为什么?
三、巩固练习
例4五年级同学参加登山活动,男同学有36人,女同学有9人
(1)男同学人数是女同学的几倍?
(2)女同学人数是男同学的几分之几?
分析:男同学人数是女同学的几倍,是以女同学人数为标准,就是求36里面有几个9,用除法计算36/9。女同学人数是男同学的几分之几,是以男同学人数为标准,就是求9是36的几分之几,也用除法计算9/36。
答:男同学人数是女同学的4倍。
女同学人数是男同学的9/36。
四、总结归纳
1、求一个数是另一个数的几分之几,用除法计算的`道理。
2、让学生应用求一个数是另一个数的算理。
五、布置作业
反思:这节课的重点是分数与除法的关系。学生比较容易理解表象,记住分数与除法的关系。但对于深层意义的理解比较困难。教师应采用多种教学手段,在学生自己总结的基础上来掌握概念。可能效果会更好些。在教学谁是谁的几分之几的时候,对于如何列式子的指导应该从谁是谁的几倍这个知识点着手来教学比较妥当。
分数除法三教案篇6
教学目标
1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。
3.培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点和难点
正确的归纳出分数除以整数的计算法则,并能正确地进行计算。
教学过程设计
(一)复习导入
1.投影,看乘法算式写出两道除法算式。
67=42
( )( )=( )
( )( )=( )
问:谁还记得整数除法的意义是什么?
板书:积 一个因数 另一个因数
师:这节课我们来学习分数除法的意义和计算法则。(板书课题)
首先研究分数除法的意义。(板书:意义)
(二)新授教学
1.分数除法的'意义。
我们来看下面的问题。(投影出示)
(1)每人吃半块月饼,5人一共吃几块月饼?
问:谁会列式计算?
问:你是怎么想的?
(2)两块半月饼,平均分给5个人,每人分得多少月饼?
问:怎样列式计算呢?
问:没有学过分数除法,得数怎么得来的?
(3)两块半月饼,分给每人半块,可分给几个人?
问:谁会列式计算?
问:为什么这样列式,怎样算出的得数?
观察这三个算式,它们之间有什么联系?
同桌讨论,指名回答。
生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。
板书:积 一个因数 另一个因数
问:与整数除法对比一下,分数除法的意义是什么?
同桌互相说一说,指定2~3名学生说。
板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。
师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。
做一做:(同学们做在书上。投影订正。)
根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。
问:你根据什么写出得数的?
师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)
2.分数除以整数的计算法则。
为什么这样列式?
(2)根据题意画出线段图。
生:把1米平均分成7份,取其中的6份。
(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。
师:有道理,结果也正确,还有别的方法吗?
师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。
学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?
师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。
(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?
生:被除数不变,除号变乘号,除数变成了它的倒数。
(5)试着说一说分数除以整数的计算法则。
板书:分数除以整数( )等于分数乘以这个整数的倒数。
想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)
问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。
计算法则是否会用呢?我们来自测一下。
投影做一做,学生做在书上,投影订正。
(三)巩固练习
1.计算下面各题。(投影)
2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)
(2)题为什么对?举错的说说你的想法?1的倒数是几?
(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?
(4)错在除号没有变成乘号。怎么改?
(5)错在除数没有变成倒数。怎么改?
去计算。)
师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。
下面我们计算几道题,看谁能正确运用计算法则。
3.计算:
4.想一想:如果a是一个自然数,
(3)用一个数检验上面的结果是否对。
(四)课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
(五)作业
课本32页第3,4,5,6题。
课堂教学设计说明
这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。
分数除法三教案篇7
一、复习引新
1.说出下面各数的倒数。
0.36
2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)
3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)
二、新授教学
(一).教学分数除法的意义(课件一下载)
①每人吃半块月饼,4个人一共吃多少块月饼?
半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()
②两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:24
③两块月饼,分给每人半块,可以分给几个人?
列式后,说一说结果是多少?你是如何得出结果的?
④组织学生讨论:分数除法的意义。
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
⑤练习反馈。
根据:,写出,(二).教学分数除以整数
1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)
①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。
③、教师板书整理。
(米)
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。
三、巩固练习
1.计算下面各题:
学生独立完成,教师巡视,进行个别辅导。
2.请同学求未知数①②3.判断。
①分数除法的意义与整数除法的意义相同。()
②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()
③()
④()
⑤()
4.解答下面各题。
①把平均分成4份,每份是多少?
②什么数乘以6等于?
③一个正方形的周长是米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
练习七1、2、3、4
六、板书设计
分数除法三教案7篇相关文章:
★ 数字三教案7篇